
Week 1 - Wednesday

 What did we talk about last time?
 Syllabus
 Started refresh on Java
 Primitive types
 Basic operations
 Shortcuts

 There are an unlimited number of reference types, including:
 Object
 String
 Scanner
 All arrays
 Any type that begins with an uppercase letter
 Any type that isn't one of the 8 primitive types

 Reference types do not use operators (except for = and == and +
[for String concatenation])

 Instead, we interact with reference types with methods

 The String type is immutable in Java
 You can never change a String, but you can create a new String
 The second line creates a new String:

 This approach can be very inefficient:

 When a lot of concatenation is expected, use StringBuilder

String stuff = "Break it down ";
stuff += "until the break of dawn";

String values = "";
for(int i = 0; i < 1000000; i++)
values += i;

 Java is a case-sensitive language
 Class is not the same as class
 System.out.println("Word!"); prints correctly
 system.Out.Println("Word!"); does not compile

 Java generally ignores whitespace (tabs, newlines, and spaces)

 is the same as:

 You should use whitespace effectively to make your code readable

System.out.println("Hello, world!");

System.out.

println("Hello, world!");

 There are three kinds of comments
 Single line comments use //

 Multi-line comments start with a /* and end with a */

System.out.println("Hi!"); // this is a comment

System.out.println("Hi!"); /* this is
a multi-line
comment */

 The third kind of comment is a documentation comment
 These comments look like multi-line comments but have an extra asterisk at

the beginning: /**
 Documentation comments have special syntax inside of them that allows the

programmer to make notes about the program that the compiler can recognize
and used to generate documentation

/**
* This method peels carrots.
* @param carrot the carrot to peel
* @return the peeled carrot
* @author Barry Wittman
*/

public Carrot peelCarrot(Carrot carrot) {
// Do stuff

}

 Java control structures come in two categories
 Selection (making a choice):
 if statements
 switch statements

 Repetition (loops):
 while loops
 for loops
 Enhanced for loops
 do-while loops

if(condition) {
statement1a;
statement2a;
…

}
else {

statement1b;
statement2b;
…

}

 The condition is any statement
that evaluates to a boolean

 If the condition is true, the
code inside the body will execute

 If it's false, the code inside the
else body will execute

 Braces for both the if and the
else are optional if there is only a
single statement

 The else part is optional as well

switch(data) {
case value1:

statement1;
break;

case value2:
statement2;
…

case valuen:
statementn;

default:
statementdefault;

}

 The data that you are performing
your switch on must be either an
int, a char, a String, or an
enum

 The value for each case must be a
literal

 Execution will jump to the case
that matches

 If no case matches, it will go to
default

 If there is no default, it will skip
the whole switch block

 Execution will continue until it hits
a break

 Allow us to repeatedly execute code
 Care must be taken to run exactly the right number of times
 Not too many
 Not too few
 Not an infinite number
 Not zero (unless that's what should happen)

 Loops come in three flavors:
 while loops
 for loops
 do-while loops

 Used when you don't know how many times a loop will run
 Runs as long as the condition is true
 Syntax:
while(condition) {
// Statements
// Braces not needed for single statement

}

 Used when you do know how many times a loop will run
 Still runs as long as the condition is true
 Syntax:
for(initialize; condition; increment) {
// Statements
// Braces not needed for single statement

}

 Used to iterate over the contents of an array (or other collection of
data)

 Similar to for loops in Python
 The typemust match the elements of the array (or other

collection)
 Syntax:
for(type value : array) {
// Statements
// Braces not needed for single statement

}

 Method to find largest value in an array

public double findLargest(double[] numbers) {
double largest = numbers[0];
for(double number : numbers) {

if(number > largest)
largest = number;

}
return largest;

}

 It's common that you want to iterate over an entire list
 Enhanced for loops are great for that but not as flexible as other loops
 You have to loop over everything (unless you use break), and you can't

look at the previous or next elements
 You can never change the values in the list with an enhanced for loop

 It can only read the values

int[] array = new int[100];
for(int value : array)
value = 25; // Does nothing!

 Used infrequently, mostly for input
 Useful when you need to guarantee that the loop will run at

least once
 Runs as long as the condition is true
 Syntax:
do {
// Statements
// Braces not needed for single statement

} while(condition);

 Write a for loop to reverse the contents of an array
 Write a while loop to reverse the contents of an array
 Now turn it into a do-while loop, just for the hell of it

 The keyword break is necessary syntax to stop executing a switch statement
 However, it can also be used to leave any of the four kinds of loops

 In any loop, instead of using break, you could use continue, which jumps to
the end of the loop instead of exiting it

 Most style guides discourage the use of break and continue
 If you use them in my classes, you will lose style points

int i = 7;
while(true) {
if(i == 14)

break;
System.out.println(i);
++i;

}

 An array is a homogeneous, static data structure
 Homogeneous means that everything in the array is the same

type: int, double, String, etc.
 Static (in this case) means that the size of the array is fixed

when you create it
 Unlike Python lists, you cannot push, pop, or resize an array

 To declare an array of a specified type with a given name:

 Example with a list of type int:

 Just like any variable declaration, but with []

type[] name;

int[] list;

 When you declare an array, you are only creating a variable
that can hold an array

 To use it, you have to create an array, supplying a specific size:

 This code creates an array of 100 double values

double[] list;
list = new double[100];

 You can access an element of an array by indexing into it, using
square brackets and a number

 Once you have indexed into an array, that variable behaves
exactly like any other variable of that type

 You can read values from it and store values into it
 Indexing starts at 0 and stops at 1 less than the length

list[9] = 138.7;
System.out.println(list[9]);

 When you instantiate an array, you specify the length
 You can use its length member to find out

 The indexes of an array and its length are always int values,
no matter what the elements inside the array are

double[] list = new double[42];
int size = list.length;
System.out.println("List has " + size +
" elements"); //prints 42

 To declare a two dimensional array, we just use two sets of
square brackets ([][]):

 Doing so creates a variable that can hold a 2D array of ints
 As before, we still need to instantiate the array to have a

specific size:

int [][] table;

table = new int[5][10];

 Static methods allow you to break your program into individual pieces
that can be called by each other repeatedly

 Advantages:
 More modular programming

▪ Break a program into separate tasks
▪ Each task could be assigned to a different programmer

 Code reusability
▪ Use code over and over
▪ Even from other programs (like Math.sqrt())
▪ Less code (and error) duplication

 Improved readability
▪ Each method can do a few, clear tasks
▪ Well named method are self-documenting

 A method takes in 0 or more parameters and returns 0 or 1
values

 A method that doesn’t return a value is declared as a void
method

 Definition syntax:

public static type name(type arg1, type arg2, …) {
//statements
//braces are always required!

}

 Proper syntax for calling a static method gives first the name
of the class that the method is in, a dot, the name of the
method, then the arguments

 If the method is in the same class as the code calling it, you
can leave off the Class. part

 If it is a value returning method, you can store that value into
a variable of the right type

Class.name(arg1, arg2, arg3);

 No connection between the two different x's and y's

public static int add(int x, int y){
int z = x + y; //5 + 10
return z;

}

int a = 10;
int x = 3;
int y = add(5, a); //y contains 15 now

 When a method is called, the arguments passed into the
method are copied into the parameters

 The names for the values inside the method can be different
from the names outside of the method

 Methods cannot change the values of the arguments on the
outside for primitive types

 Methods can change the values inside of arrays and
sometimes inside of object types
 But they can't change which array or object the reference is pointing

to

 Write a method with the following signature that converts a
String representation of an integer into an int value

 public static int parseInt(String value)

 First graded lab tomorrow
 On Friday, we'll talk about:
 Classes
 Objects
 Enums
 Packages

 Review Chapters 3 – 8 (except for 7)
 Office hours end at 4 p.m. instead of 5 p.m. today for Faculty

Assembly

	COMP 2000
	Last time
	Questions?
	Java Basics
	Reference types
	Strings
	Case sensitivity
	Whitespace
	Comments
	Documentation comments
	Control Structures
	Control structures
	if statement
	switch statement
	Loops
	while loops
	for loops
	Enhanced for loops
	Enhanced for loop example
	Enhanced for loop rules
	do-while loops
	Loop examples
	break and continue
	Arrays
	Definition of an array
	Declaration of an array
	Instantiation of an array
	Accessing elements of an array
	Length of an array
	Two dimensional array
	Static Methods
	Static Methods
	Return type and parameters
	Calling syntax
	Binding example
	Binding
	Method practice
	Upcoming
	Next time…
	Reminders

